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Synopsis 

Percolation conductance has been studied for polypropylene/poly(acrylic acid) membranes 
(PP-g-PAA) prepared by volume grafting of a n  ionic component onto polypropylene foil. In 
these membranes the volume fraction of the conducting phase decreases from the surface to 
the center, bringing some anisotropy into the composition. For this material, the “insulator- 
to-conductor” transition proceeds at a critical volume fraction V,  equal to 0.395. It has been 
proved that this critical volume fraction and the critical exponent t, found to be below that 
predicted by theory, i.e., 1.2 f 0.03 instead of 1.6 f 0.2, result from the gradient in the 
distribution of the conducting component in the direction of the current flow. Computations 
of V ,  and t for the same PP-g-PAA copolymer with a randomly distributed conducting com- 
ponent have led to V: = 0.08 and t’ = 1.53. A critical exponent t in that range is characteristic 
of three-dimensional systems; however, V,  is rather low, suggesting a nonspherical shape for 
the conducting domains. 

INTRODUCTION 

The percolation theory has been proposed by Broadbent and 
Hammer~leyl-~ as a mathematical model for motion through an unpre- 
dictable or random medium. The application of percolation theory to the 
problems of conductance of heterogeneous systems or disordered resistor 
lattices was presented first by Shante and Kirkpat r i~k .~ .~  Recently this 
theory has been used successfully for the description of conductivity, 6~7 
transport *s9 and mechanicallo properties of some cation selective mem- 
branes. In the paper presented here we report on a percolation conductance 
study of membranes prepared from graft copolymer: poly(propy1ene-g-acryl- 
ic acid) (PP-g-PAA). Within this copolymer the ioncontaining segments 
aggregate forming clusters embedded in an insulating matrix. 11,12 This het- 
erogeneous ionic/nonionic system can be considered as a polymer blend 
composed of conducting [poly(acrylic acid)] and nonconducting (polypro- 
pylene) components. 

In the previous paper l3 we proved that, inside the PP-g-PAA membranes 
used here, the fraction of poly(acry1ic acid) decreases from the surface to 
the center causing some ordering of the conducting component within the 
membrane. Due to this particular structure these membranes can be useful 
for verifying the applicability of percolation theory to macroscopically an- 
isotropic systems. 
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Background to Percolation Theory 
The percolation theory has been formulated on the ground of percolation 

probability P(p) in heterogeneous systems or in resistor lattices. In a site 
percolation model, percolation itself depends on the probability that a con- 
ducting center (particle) will occupy a given site in n-dimensional space. In 
a bond percolation model P(p) is a function of the probabilityp that two 
neighbouring lattice nodes will be connected by a conducting bond. At the 
critical probability point pc both systems undergo the “insulator-to-con- 
ductor” transition. Below p ,  the systems behave as insulators whereas above 
the percolation threshold they behave as conductors. According to the the- 
ory, above and near the percolation threshold the dependency of P(p) on 
p takes the form 

with f i  being the critical exponent dependent on the system dimensionality 
only. On the other hand, p, depends on the type of percolation considered 
(i.e., site or bond), the symmetry of the lattice or the spatial distribution of 
conducting sites, and the dimensionality of a system. 

In practice, for conducting systems, the probability p of eq. (1) is often 
replaced by the concentration of conducting centers or bonds x: 

where K denotes conductivity and t is a universal critical exponent. For 
three-dimensional systems and a site percolation model, theoretical esti- 
mate o f t  is 1.6 f 0.2 whereas for a bond percolation model it is 1.5 f 0.2. 

For the site percolation model, Scher and Zallen14 proposed the critical 
volume fraction (CVF) of the conducting phase as a characteristic constant. 
It can be represented as the product of critical probabilityp, and a max- 
imum packing factor (filling factor) f for a given system: 

Consequently, the conductivity power law takes the form: 

where K~ is the specific conductivity of a conducting phase. The critical 
exponent t ,  like f i ,  depends on space dimensionality only, whereas the V, 
is influenced by the mutual disposition and shape of the conducting par- 
ticles. For the simplest system composed of conducting and nonconducting 
spheres of radius equal to a half of the lattice spacing, located at lattice 
nodes, V, is 0.15 f 0.02 and depends only slightly on the lattice symmetry. l4 
Also, for systems with more complicated topological characteristics and for 
continuous systems V, is expected to be the same.15J6 

In this paper we present an experimental verification of the applicability 
of percolation theory to a macroscopically anisotropic system. Taking into 
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account the fact that in the membranes studied here the CVF can be affected 
by the state of dispersion and an  anisotropy in the disposition of the ionic 
component we aimed at: 

-estimation of CVF for the system with isotropic distribution of the 
conducting phase in the XY plane and anisotropic in the direction perpen- 
dicular to this plane; 

-estimation of CVF for the same copolymer PP-g-PAA but with an 
isotropic array of the ionic component; 

-verification of the invariability of the critical exponent t . 

EXPERIMENTAL 

Membranes 

Investigations were performed with membranes prepared by volume 
grafting of acrylic acid onto thin polypropylene foil (23 k 2 pm), free of 
antioxidant. In the membranes examined the amount of grafted polyacrylic 
acid varied from 20 to 80-wt%. Distilled acrylic acid (practical grade, Fluka 
AG) and isotactic polypropylene (M.Z.P.R., Poland) were used for membrane 
preparation. Before grafting, the PP foil was activated by oxygenation to 
form peroxide and hydroperoxide groups along the PP chains. Grafting itself 
was carried out at 358 K using ferrous sulfate as the activator. Degree of 
grafting was controlled by the time of grafting. The details of oxidizing and 
grafting have been presented earlier.13 The main properties of the mem- 
branes, i.e., the degree of grafting, water content, and the concentration of 
carboxylic groups are listed in Table I. 

Conductivity Determinations 

Membrane conductivity was measured with an ac bridge (1 kHz) by a p  
plying the method described in the iiterature.17 Prior to experiments, the 
membranes were converted to their potassium form by ion exchange in 

TABLE I 
The Main Properties of PP-g-PAA Membranes 

Concentration of 
ionic groups in 

Degree of grafting Volume fraction the swollen mem- 
wt 70 of g-PAA in brane in K+ form, 
the dry membrane V ,  C ,  (mol/dm3) 

of water, 

20 0.295 1.48 
25 0.404 1.65 
28 0.500 1.59 
36 0.670 1.41 
37 0.480 1.86 
43 0.695 1.63 
47 0.780 1.30 
60 0.800 1.59 
69 0.823 1.68 
73 0.859 1.44 
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0.5M KOH solution, then they were washed with distilled water and left 
for equilibration in 0.1M KOH solution. To assure the precise determination 
of conductivity, the experiments were carried out by using a two-compart- 
ment cell with platinized-platinium elecrodes mounted on two blocks at 
adjustable distances. The conductance was measured at 298 2 0.1 K with 
the cell filled with 0.1M KOH solution alone ( K ~ )  and with KOH and the 
membrane ( K ~ )  by using an autobalance conductivity bridge (Meratronik 
E315A). The specific conductivity of the membrane was calculated from the 
equation 

K, = K1 K2 * I /  (K1 - Kz) * s (5) 

where I and S denote the thickness and active area of the membrane. The 
results can be seen in Figure 1. 

Concentration Profiles of Grafted Poly(acry1ic Acid) 
within the Membranes 

Thin slices of dyed films were photometered by using a microscope and 
the photometer assembly devised in our laboratory and described earlier. l8 
The slices were cut perpendicular to the film surface by using a microtome. 
A 1% solution of methylene blue in buffer solution of pH 9 was used for 
dyeing. Later the slices were washed with water and acetone and dried. 
Examples of profiles, drawn in coordinates of light absorption ( A )  vs. the 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 
V 

Fig. 1. Membrane conductivity dependence on the volume fraction of the conducting phase. 
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normalized film thickness (dld,), are seen in Figure 2. They demonstrate 
the symmetrical distribution of the ionic component within the membrane. 
Three “layers” are easily distinguished: 

-the surface layer with almost constant fraction of grated polyacid; 
-the intermediate layer with the fraction of grafted polyacid decreasing 

toward the central part of the membrane; 
-the central layer with the lowest fraction of the ionic polymer. In the 

membranes of highest degree of grafting the g-PAA gradient vanishes. 
When examining thin slices cut parallel to the membrane surface (XY 
plane), no anisotropy of the ionic component has been noted. The photo- 
metric curves were used further to calculate the volume fractions of the 
ionic component in each layer. 

Calculation of Volume Fractions of the Ionic Component within 
Swollen Membranes and Layers 

According to eq. (4), in order to describe the conductivity of membranes 
by the percolation theory the volume fraction of the internal conducting 
phase (V) must be known. Within the PP-g-PAA membranes this phase 
consisted of ioncontaining polymer chains (VpA), potassium counterions 
(V,), and water swelling the membrane (Vw): 

0 0.1 0.2 0.3 0.4 0.5 

DISTANCE, d/d, 

Fig. 2. Concentration profiles of g-PAA in the dry state of the grafted membranes at 
different graft level (wt-%). 
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The volume fraction of the ionic polymer was calculated after having de- 
termined the mass of grafted polyacid in the dry membrane ( W 1: 

In eq. (7) dpA and dPP are the densities of poly(acry1ic acid) and polypro- 
pylene, respectively. To calculate the volume fraction of water V, in the 
swollen membrane the molar volume of water was taken to be the same 
as in bulk water, i.e., 18.03 x lop3 dm3/mol. The volume fraction of po- 
tassium counterions V, was calculated from the relation 

where C, is the molarity of carboxylic groups in the swollen membrane 
and V; is the partial molar volume of poatssium ions at infinite dilution 
in water, i.e., 8.7 x 10 - 3  dm3/mol. 

The volume fraction of conducting phase (Vi) and the relative thickness 
(Li) of each of the layers in the swollen membranes have been estimated 
from photometric curves. In computations, proportionality between the con- 
centration of carboxylic groups (Mi) and mean absorption (A i) for each layer 
has been assumed. With this assumption one finds the relations: 

where 

In eqs. (10)-(12), C denotes the concentration of carboxylic groups (mol 
cm-3) and Z i  is the thickness of the layer obtained form the photometric 
curve, both C and li referring to dry membranes. 

Assuming further that, in the swollen membrane, hydration of carboxylic 
groups, H (H= V,/C,; for numerical values of V, and C,, see Table I), 
expressed as the volume of water per mol of -COO- groups, is constant, 
the volume of water in each layer Vw,i has been calculated from 

Vw,i = HMi, i = 1, 2, 3 (13) 

With the calculated values of M i  and Vw,i from eqs. (9)-(13), it was possible 
to compute Vi and Li, i.e. the thickness of the swollen layer. The results 
are presented in Table 11. 
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TABLE I1 
The Distribution of g-PAA in Swollen Membranes from Photometric Data 

Volume fraction of 
conducting phase in Total volume 

conducting phase, 
fraction of a layer Thickness of a layer 

V v1 v2 V3 Ll Lz L3 

0.40 0.83 0.59 0.03-0.08 0.08 0.11 0.31 
0.52 0.84 0.63 0.10 0.10 0.15 0.24 
0.61 0.86 0.68 0.15 0.12 0.18 0.20 
0.70 0.85 0.70 0.33 0.15 0.24 0.12 
0.77 0.89 0.77 0.37 0.14 0.24 0.12 
0.80 0.89 0.79 0.58 0.15 0.26 0.09 
0.86 0.92 0.66 0.74 0.14 0.27 0.09 
0.90 0.92 0.90 0.87 0.15 0.23 0.12 
0.93 0.93 0.93 0.93 0.25 0.23 0.02 
0.95 0.95 0.95 0.95 0.25 0.25 - 

RESULTS AND DISCUSSION 

Critical Volume Fraction V, and Critical Exponent t for 
Anisotropic Membranes 

The relation of K ,  to the volume fraction of the conducting component 
(Fig. 1) confirms the appearance of the conductivity threshold. The CVF 
corresponding to the threshold point was estimated by extrapolating the 
curve K ,  = f ( v >  to zero conductivity whereas the exponent t was found 
from eq. (4) written in the logarithmic form, i.e., 

 log(^,) = const + t - log (V - V,) (14) 

Found in this way, the CVF equals 0.395 and appears to be considerably 
above that predicted by theory for simple heterogeneous isotropic systems 
(CVF = 0.15). Also the exponent t ,  calculated with the least-square method, 
has been found to be 1.21 & 0.03 instead of 1.6 & 0.2, predicted by the 
percolation theory for three-dimensional systems. The plot of K, vs. (V - 
V,) is presented in Figure 3. Considering that eq. (4) may be adequate for 
describing the system near the percolation threshold only, calculations of 
the exponent t have been repeated limiting the range of V - V,. The results 
presented in Table I11 prove that t is almost constant over the whole range 
of volume fractions of the conducting phase. The correlation coefficient for 
log ( K , )  vs. (log V - V,) exceeds 0.99 and does not depend on the range of 
V - V,, confirming that eq. (4) is appropriate for describing the conductivity 
of the examined membranes. Invariability of the exponent t over a wide 
range of V is typical of site type percolation.19 To exclude the possibility 
of a lowering of the exponent t by inaccuracy in determining V,, we esti- 
mated it again by fitting eq. (4) to the experimental data and adjusting K ~ ,  

V,, and t by using a nonlinear least-square non-method. With this procedure 
we have found V, = 0.382 zL- 0.002 and t = 1.3 f 0.05. Both constants 
differ only slightly from those noted above. Thus one may conclude that 
values different from the theoretical V, and t found here are characteristic 
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-2.6 -2 -1  0 
LOG( V - Vc ) 

Fig. 3. Log (K , )  vs. (V - V,) plot for PP-g-PAA membranes with critical volume fraction 
V,  equal to 0.395. 

of the membranes studied and may result from anisotropy in the membrane 
composition. 

Critical Volume Fraction V, and Critical Exponent t 
for PP-g-PAA Copolymer 

Modeling the percolation in the membranes studied here we postulate 
that within each of three layers the conducting ionic polymer is distributed 
randomly and the layers are isotropic in composition* and, for each of 

* To test how far the model with constant concentration of g-PAA through the intermediate 
layer (i = 2) fits the membrane structure, we allowed for a gradient in the concentration of 
this component; however, no significant improvement was found with this modification. 

TABLE I11 
The Dependence of The Critical Exponent t on The Excess Volume Fraction of The 

Conducting Phase (V-V,) 

Linear correlation 
coefficient for 

V-V, range Critical Confidence lOg(K,) VS. 
used for exponent limits for t, log (V-V,) relationship, 

calculation t f t  r 

0.555 1.21 0.029 0.996 
0.535 1.20 0.032 0.996 
0.507 1.20 0.038 0.996 
0.469 1.18 0.038 0.997 
0.406 1.18 0.050 0.997 
0.370 1.17 0.072 0.997 
0.310 1.20 0.088 0.998 
0.210 1.24 0.120 0.999 
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isotropic layers, eq. (4) is appropriate for describing percolation with the 
same Vi and t* .  If the specific conductivity of the grafted potassium po- 
lyacrylate is constant, independent on the layer, the resistance of a layer 
i can be expressed as follow: 

whereas the specific conductivity of the membrane is 

K, = 0.5 * K, i L , .  (V,-T?)-t* 
i = l  

(16) 

The constants V’,, t * ,  and K~ which appear in eqs. (15) and (16) differ from 
the previous ones (V,, t )  since they correspond to the local isotropic ar- 
rangement of PP-g-PAA in a particular layer. The comparison of Vi to V, 
and t* to t should answer to the question formulated at the beginning, i.e., 
how far the anisotropy of the system may influence the parameters of the 
percolation power law. 

The values of Vi, t *, and K~ have been computed by using the least-square 
nonlinear method, trying to fit eq. (16) to the experimentally determined 
K,. The best fit values and their statistical confidence limits are presented 
in Table IV. Bearing in mind the simplifications introduced in the model, 
we regard the computed V’, and t * as approximate. It can be seen, however, 
that the critical exponent t * corresponds to the one theoretically predicted 
for three-dimensional systems. According to the experimental results pub- 
lished by some authors,20-22 a critical volume fraction in the range 0.7- 
0.10 is characteristic of polymers loaded with conducting particles. 

The shape and the spatial distribution of conducting domains in heter- 
ogeneous systems can be discussed on the basis of the critical colume fraction 
itself and the maximum packing factor f .  This factor describes the system 
with the conducting phase at saturation. For the membranes examined 
here, f is very high, exceeding 0.95. The factor f tending to unity is char- 
acteristic of bicontinuous systems. Taking into account that membranes 
studied were prepared by grafting acrylic acid previously introduced into 
polypropylene foil by diffusion, one can accept that the structure of these 
membranes should resemble an “alloy” with the ionic polymer appearing 
in the amorphous domains of polypropylene. Formed in this way, conducting 

TABLE IV 
Critical Volume Fraction (VJ, Critical Exponent ( t ) ,  and Specific Conductivity of Ionic 

Component (K,,) in PP-g-PAA Membranes* 

For anisotropic For isotropic local 
membrane arrangement of PP-g-PAA 

Parameter (from experimental data) (from model) 

v,, v,’ 0.395 0.08 f 0.05 
t ,  t’ 1.21 f 0.03 1.53 f 0.32 
KO - 3.77 f 0.56 
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domains have possibly a fiber- or sticklike shape. The published data confirm 
that materials containing conducting particles of such a shape show 
or sometimes very low CVF as has been found for conducting systems with 
fibrillar-shaped particles. l5 

CONCLUSIONS 
The results lead to the following conclusions: 
For the polypropylene-g-poly(acry1ic acid) membranes with macroscopi- 

cally anisotropic distribution of the conducting component, the conductivity 
threshold has been found to be at the critical volume fraction V, = 0.395. 
This value is considerably above that predicted by theory for a system 
composed of randomly distributed conducting particles of regular shape. 
We suggest that this increase comes from a high correlation in the spatial 
disposition of the conducting centers within the membrane. The attainment 
of the CVF, enabling the formation of an infinite conducting cluster, in 
these membranes is limited by the concentration of the ionic component 
in their central part. 

The CVF for the polypropylene-g-poly(acry1ic acid) copolymer with iso- 
tropic distribution of the ionic component has been estimated as 0.08. This 
value is close to that characteristic of polymer composites containing non- 
spherical conducting particles. 

The polypropylene-g-poly(acry1ic acid) membrane with its two critical 
volume fractions-one local, for each layer (isotropic), and another for the 
whole membrane (anisotropic)-provides a system useful for verifying the 
invariability of the critical exponent t .  The results p ~ b l i s h e d ~ , ~ ~  for 2- 
dimensional systems with anisotropy in the shapes or sizes of the conducting 
component suggest that t is almost constant whereas for the systems with 
anisotropic density of the conducting bonds t seems to depend on anisotropy. 
The computations presented here proved that the anisotropy in the distri- 
bution of the conducting phase causes a decrease in the exponent t in 
comparison with the theoretically predicted value for isotropic materials. 

The power law for the percolation conductivity of the heterogeneous sys- 
tems, viz., 

with the constant exponent t was found to be appropriate for describing 
the conductivity of membranes studied over a wide range of volume fraction 
of the conducting component, i.e., from percolation threshold up to V = 
0.9. 

This work was supported by the Project MR-1-31. 
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